This is a review text file submitted electronically to MR.
Reviewer: Konstantopoulos, Takis
Reviewer number: 68397
Address:
School of Mathematical \& Computer Sciences
Heriot-Watt University
Edinburgh, EH14 4AS
SCOTLAND
T.Konstantopoulos@hw.ac.uk,takis@ma.hw.ac.uk

Author: Oliveira, Roberto Imbuzeiro
Short title: On the convergence to equilibrium of Kac's random walk on matrices.
MR Number: 2537204
Primary classification: 60J27
Secondary classification(s): 65C40

Review text:

Consider a random element of $S O(n)$ defined by mapping some $v \in \mathbb{R}^{n}$ to another $v^{\prime} \in \mathbb{R}^{n}$ obtained as follows: First pick two distinct indices i, j from $\{1, \ldots, n\}$ at random. Then, independently, pick an angle $0 \leq \theta \leq 2 \pi$ uniformly at random, and let $\left(v_{i}^{\prime}, v_{j}^{\prime}\right)$ be the rotation of $\left(v_{i}, v_{j}\right)$ by an angle θ, but leave every other coordinate intact.
Letting $R(0), R(1), \ldots$ be i.i.d. copies of this random element. Kac's random walk is defined by $v(t)=R(t-1) \cdots R(0) v(0), t \geq 1$, with $v(0)$ independent of $R(0), R(1), \ldots$; it evolves in the sphere with radius the Euclidean norm of $v(0)$. This paper studies the Markov process in $S O(n)$ defined by $X(t)=R(t-$ 1) $\cdots R(0) X(0)$, where $X(0)$ is a given random element of $S O(n)$, independent of $(R(0), R(1), \ldots)$ with law, say, μ. Let $K_{x}(\cdot):=\mathbb{P}(R(0) x \in \cdot)$. Then the law of $X(t)$ is given by $\mu K^{t}(\cdot)=\int_{S O(n)} \mu(d x) K_{x}^{t}(\cdot)$.

To state the results of the paper we need the notion of the Wasserstein distance $W_{d, p}$, or transportation cost, between probability measures μ, ν on a metric space (M, d) : given $p \geq 1$, define

$$
W_{d, p}(\mu, \nu)=\inf \left(\mathbb{E} d(X, Y)^{p}\right)^{1 / p}
$$

where X, Y are random elements of M, defined on a common probability space and having distributions μ, ν, respectively, and where the infimum is taken over all such pairs.

Let D be the Riemannian metric on $S O(n)$, i.e. $D(a, b)$ is defined as the length of the shortest path from a to b. Let \mathcal{H} be the Haar measure on $S O(n)$. The first result of the paper states that, given $\varepsilon>0$, the smallest t such that
$W_{D, 2}\left(\mu K^{t}, \mathcal{H}\right) \leq \varepsilon$, for all probability measures μ, is at $\operatorname{most}\left\lceil n^{2} \log \left(\pi \sqrt{n} \varepsilon^{-1}\right)\right\rceil$. This improves previously known bounds.

On the other hand, for $a, b \in S O(n)$, let

$$
\operatorname{hs}(a, b):=\sqrt{\operatorname{trace}\left((a-b)^{\dagger}(a-b)\right)}
$$

be the Hilbert-Schmidt distance between a and b. The second result of the paper asserts the existence of positive constants ε_{0} and c such that the smallest t satisfying $W_{\mathrm{hs}, 1}\left(\mu K^{t}, \mathcal{H}\right) \leq \varepsilon_{0}$, for all μ, is at least $c n^{2}$.

The proof of the upper bound is based on a theorem (proved in the paper) stating the following: if $P_{x}(\cdot)$ is a transition probability kernel on a Polish space (M, d) which (i) has finite p th moments for all x (i.e. $\int_{M} d(a, y)^{p} P_{x}(d y)<\infty$ for all a and x) and (ii) is locally C-Lipschitz (as a map from (M, d) into the space of probability measures on M with the $W_{d, p}$-Wasserstein metric) then

$$
W_{d, p}(\mu P, \nu P) \leq C W_{d, p}(\mu, \nu)
$$

for all probability measures μ, ν on M.
The case where M is a compact space with finite diameter $\operatorname{diam}_{d}(M)$ is important for the paper. In this case, if $x \mapsto P_{x}$ is locally Lipschitz with $C=1-\kappa<1$ then the last inequality and the fixed point theorem tells us that there is a unique probability measure μ_{*} such that $\mu_{*} P=\mu_{*}$ and, moreover, $W_{d, p}\left(\mu P^{t}, \mu_{*}\right) \leq e^{-\kappa t} \operatorname{diam}_{d}(M)$, which implies that the least t such that $W_{d, p}\left(\mu P^{t}, \mu_{*}\right) \leq \varepsilon$ is at most $\kappa^{-1} \log \left(\varepsilon^{-1} \operatorname{diam}_{d}(M)\right)$.

The upper bound then is established by showing (i) that $x \mapsto K_{x}$ (as a mapping from $(S O(n), D)$ into the space of probability measures on $S O(n)$ with the $W_{D, 2}$ metric) is locally C-Lipschitz with $C=\left(1-\frac{1}{2} n(n-1)\right)^{1 / 2}$, and (ii) that $\operatorname{diam}_{D}(S O(n)) \leq \pi \sqrt{n}$. To show (i) a particular coupling of K_{x} and K_{y} is devised. To show (ii) the length of a particular curve connecting two elements of $S O(n)$ is computed.

As for the lower bound, first an inequality involving packing and covering numbers is shown and then these quantities are estimated for $S O(n)$.

The paper also discusses related random walks (Kac's walk with non-uniform angles and a walk on unitary matrices) and concludes by stating a number of conjectures and open problems.

